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ABSTRACT
In the social network research, the studies on social influence max-
imization and entity similarity are two important and orthogonal
tasks. On homogeneous networks, social influence maximization
research tries to identify an initial influential set that maximizes
the spread of the information, while similarity studies focus on de-
signing meaningful ways to quantify entities’ similarities. When
heterogeneous networks are becoming ubiquitous and entities of
different types are related to each other, we observe the possibility
of merging the two directions together to improve the performance
for both of them. In fact, we found that influence values among one
type of nodes and similarity scores among the other type of nodes
reinforce each other towards better and more meaningful results.

Therefore, we introduce a framework that computes social influ-
ence for one type of nodes and simultaneously measures similar-
ity of the other type of nodes in a heterogeneous network. First,
we decouple the target heterogeneous network (or we call it In-
fluence Similarity (IS) network) into three different parts: Influ-
ence network, Similarity network and information tunnels (IT) be-
tween them. Through IT, we exchange the influence scores and the
similarity scores to calculate more precise similarity and influence
scores in order to improve both of their qualities. The experiment
results on real world data shows that our framework enables influ-
ence maximization framework to identify more influential seeds in
Influence network and similarity measures to produce more mean-
ingful similarity scores in Similarity network simultaneously.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–Data Min-
ing
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1. INTRODUCTION
Two prominent techniques of social network mining are social

influence maximization and entity similarity analysis. Given a user
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population and their relations in an information cascade scenario,
social influence maximization is centered on constructing a mean-
ingful influence network, identifying a set of most influential nodes
in the network, and maximizing the spread of influence through
such a social network. Similarity analysis, as another flourishing
research direction, is proposing methods for measuring nodes simi-
larities, based on the network structure and node features. Although
influence and similarity analysis could provide tools for similar ap-
plications, including information retrieval, ranking, or recommen-
dation, they are often considered as orthogonal techniques that are
studied separately, besides they are often applied to homogeneous
networks. When the heterogeneous network is becoming ubiqui-
tous, we notice that it is not only necessary but also beneficial to
combine the two techniques into one framework because we can
use information from one side to calibrate the other side.

Given a set of users and their influential relations, the ultimate
goal of social influence maximization research is to identify lim-
ited number of influential people as seeds from which the spreading
of information entity would be maximized. An Influence network
of the users is first constructed according to such relations. Algo-
rithms that depict different information cascading rules are devel-
oped on the network to explain the real cascading phenomena.

Previously, majority of such research assume that the cascading
network is given and so are activation probabilities among nodes [1,
4] which is either a fix number for every node or weighted value of
a node’s degree. Their major focuses are under different diffusion
models, e.g., independent cascade [1, 4], linear threshold [4], how
to design the best algorithm to identify the "influential" users. Fur-
thermore, they compared the performance of these algorithms on
the cascading coverage, i.e., the number of final activated people in
the given network. To the best of our knowledge, there are two im-
portant phenomena that are constantly overlooked by the previous
research. The first one is that they seldomly demonstrate the seed
qualities in the real network that are selected by their algorithms.
The second overlooked phenomenon is the definition of activation
probability. Under which circumstance would a user activate an-
other, i.e., pass over the information, is an important factor to the
whole cascading process. However, majority of other work simply
assume that the probabilities are given and randomly assign these
probabilities in their experiment settings. We have only found 1
publication [3] that explicitly studies how to calculate such prob-
abilities, and their work is in a totally different problem setting.
Our approach addresses the two overlooked factors by introduc-
ing similarity measures. In a heterogeneous network, the activation
probability between two nodes of the same type is often related to
the other type of nodes they connect to. Considering such connec-
tions would offer us a more precise way of activation probability
model and a better influence maximization result. We also perform
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a detailed seed qualities comparison to demonstrate these qualities
do get improved by our model.

The research community has proposed numerous similarity mea-
sures, symmetrical or asymmetrical, for nodes in social networks,
which consider node features, link features, and other semantic fea-
tures. Also, the similarity measures have been defined over either
homogeneous or heterogeneous networks among the same type of
nodes or different types of nodes. A simple clue for designing
meaningful similarity measures is to customize the definition and
consider more information according to application’s scenario.

In our case, due to the heterogeneous nature of the network,
when computing the similarity of one type of nodes, we should
put the influence of the other type of nodes into the formulation.
This leads to an asymmetric similarity formulation. This approach
has never been studied before. As we analyzed in the above sub-
section, introducing similarity to influence maximization in a het-
erogeneous network could be beneficial to many key aspects on
the influence maximization. Further more, similarity measure gets
more customized information from influence maximization side,
which should potentially be beneficial too. Our experiment results
confirm this mutual beneficial relation.

Similarity and influence computation can benefit each other, which
motivates us to study how to effectively combine them together in
one framework. Our technique adopts reinforcement scheme on
the top of heterogeneous network de-coupling. To be more spe-
cific, we first define a special bi-typed heterogeneous network as
Influence Similarity (IS) network; We then de-couple its different
types of nodes into two homogeneous networks based on their re-
lations, and we do the maximization of social influence spreading
on the Influence network and expectation of similarity measures on
the Similarity network. However, the two networks are not totally
separated. There is a latent tunnel connecting them for the sake of
delivering information back and forth to improve the performance
influence and similarity analysis.

We summarize our major contributions as follows.

• We propose a new angle of treating influence maximization
and similarity computation together. To our best knowledge,
our work is the first to explicitly explore how to make use of
both techniques together to analyze a heterogeneous network
in a more comprehensive way.

• We study the mutual improvements of influence maximiza-
tion and similarity computation on each other. An iterative
algorithm with optimization on decoupled heterogeneous net-
works is tailored for this reinforcement relationship.

• We demonstrate its effectiveness through real world social
network analysis. Our method outperforms state of the art
in influence maximization and similarity computation when
they are performed separately.

2. INFLUENCE-SIMILARITY COMPUTATION
FRAMEWORK

2.1 IS network and its de-coupling
IS network is a special type of heterogeneous network with edge

features of different practical meanings for different edge types.
We have observed that it is generic enough to capture important
relations for different types of nodes and explore the hidden re-
inforcement between influence and similarity. First, we formally
define the generic Influence Similarity network. We then explain
necessary concepts related to our model in the next subsection.

DEFINITION 2.1. (Influence similarity Network) An IS network
is a directed heterogeneous network G(V, E ,F) of two different
types of nodes, four types of edges with associated edge features.
For ease of presentation, let VX be the set of nodes we want to
study influence on and VY the set of the type of nodes for simi-
larity research, where V = VX ∪ VY . There are four types of
edges EXX , EXY , EY X , EY Y connecting different types of nodes,
and E = EXX ∪ EXY ∪ EY X ∪ EY Y . F is a feature vec-
tor associated with different types of edges. F = FX ∪ FY .
FX = {fX |∀eX ∈ EXX} is a vector of variables, each one of
which describes the influence scores between two nodes of an edge
eX . Similarly, FY = {fY |∀eY ∈ EY Y } is another vector of vari-
ables for similarity scores on the other type of nodes.

Given an IS network, it is worth noting is that it is application
dependent on the categorization of VX and VY . On the abstract
level, the goal of IS modeling is to pick up influential initial seeds
to maximize the spreading of social influence on nodes VX and
simultaneously compute the similarity of nodes VY , so that the re-
sults of the two tasks reinforce each other. However, before ap-
plying the model, one should fix the one type of nodes as type VX
and another type of nodes as type VY , so that the categorization is
meaningful to the specific application.

To fulfill our goal to obtain better results for both tasks by cali-
brating each other, we propose our framework in three steps. What
we are introducing now is the first step, IS network decoupling. As
the majority of previous research on either influence or similarity
is on homogeneous networks, we want to first decouple IS network
into two homogeneous ones and information tunnels between them.

DEFINITION 2.2. (IS network decoupling) IS network decou-
pling is a mapping L : G(V, E ,F) → GX(VX , EX , FX)×GY (VY

, EY , FY ) × GIT (VX ∪ VY , EXY ∪ EY X), In the mapping, we
have VX = VX , VY = VY , EX = EXX , EY = EYY , FX = FX ,
FY = FY . EXY = EXY and EY X = EYX .

As seen in the above definition, in the decoupling process, we
first preserve the nodes and edge structures for both influence net-
work and similarity network. That is to separate the IS network into
two by structurally removing edges EXY and EYX . However, these
edges are actually preserved as the information tunnels: GIT (VX∪
VY , EXY ∪EY X). We call it information tunnel, since the similar-
ity and influence information can transit through these connections.
One should be aware that GIT (VX ∪ VY , EXY ∪ EY X) is a bi-
partite graph, which only represents the connection between VX

and VY . Thus, its edges have no weights. Moreover, EXY and
EY X are complimentary to each other. If an edge aXbY belongs
to EXY , bY aX is in EY X . For example, in a paper-author net-
work, that a paper is "written" by an author actually is the same as
the author "writes" the paper. Figure 1 illustrates such decoupling
process. In the following subsections, we will model the informa-
tion passing in details in coordination with the influence similarity
reinforcement.

2.2 Maximizing Influence Spreading on Influ-
ence Network

Similar to the state-of-the-art research on the social influence
maximization, our task on the Influence Network is to identify k
seed nodes such that the spreading of information can be maxi-
mized. The influence of zX on wX is often represented by the
probability that zX activates wX , in another word, information is
passed from zX to wX . Here we follow the classic independent
cascade (IC) model to simulate the information diffusion. How-
ever, instead of having the activation probabilities on every pair
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Figure 1: Edge Transformation in IS Decoupling

of nodes are the same value drawn from uniform distribution, we
come up with a more fine-grained activation probability definition.
Therefore, our design is the same diffusion process with IC model
with finer-grain direct neighbor activation probability.

Let h(uX , vX) denote the probability that uX can activate vX
in the independent cascade model. Figure 2 shows how we define
h(uX , vY ) step by step, where each step is explained as follows.

• When two nodes uX and vX are neighbors (Figure 2(a)) in
the Influence network GX(VX , EX , FX) (where nodes are
circles), the activation probability from uX to vX is obtained
by considering the similarity scores of their connected nodes
in the similarity network (where nodes are squares). We sup-
pose the similarity of iY and jY is g(iY , jY ) (formally de-
fined later), the similarity of kY and rY is g(kY , rY ), and the
similarity of kY and lY is g(kY , lY ). We consider uX can
influence vX through iY jY , kY rY and kY lY independently.
Thus h1(uX , vX) = 1−(1−g(iY , jY ))(1−g(kY , rY ))(1−
g(kY , lY )). More generally, if uXvX ∈ EX , we define

h1(uX , vX) = 1−
∏

iY jY ∈EY
uX iY ,vXjY ∈EXY

(1− g(iY , jY )) (1)

• When two nodes n1 and nm are not direct neighbors but they
are connected via a sequential path p (Figure 2(b)), then we
can define

hp =

m−1∏

i=1

h1(ni, ni+1). (2)

• At last, when we try to calculate h(sX , tX), and if there ex-
ists n paths between sX and sY , we also assume that all these
paths are independent. Thus,

h(sX , tX) = 1−
n∏

i=1

(1− hpi) (3)

The major difference between the above formulation and tradi-
tional activation probability in IC model is the activation proba-
bility between neighbors. We do not use uniform distribution to
draw a number and fix it for every edge in the influence network.
Other than that, we calibrate the activation probability for every
edge based on their nodes’ connections to the similarity network
and how those connections interact in the similarity network. Most
recently, a study from [3] has explored the way of tailoring edge-
dependent activation probability for influence maximization. How-
ever, it has no consideration of similarity information from another

(a) neighbor (b) sequential

(c) multiple

Figure 2: Activation Paths

network, and it has no intention to use the reinforcement of influ-
ence and similarity information.

Now we will discuss how we define similarity scores in the sim-
ilarity network based on influence scores in the Influence network.

2.3 Similarity Measure on Similarity Network
We want to first clarify that the similarity in this paper is an

asymmetric concept. The similarity score of two nodes could be
symmetric and it has valid meanings in many applications. Asym-
metric similarity is a complementary concept to symmetric simi-
larity because there also exists many other practical circumstances
where g(uY , vY ) �= g(vY , uY ). For example, in a paper citation
network, paper A having certain similarity to one of its citations B
does not necessarily mean B has the same level of similarity with
A. In a social network, entities’ similarity are also often asymmet-
ric, e.g., the way a song being similar to a video in sharing events
is often different from the way a video being similar to a song.
Therefore, we model the similarity in an asymmetric way.

Given two nodes uY ∈ VY and vY ∈ VY in the Similarity net-
work GY (VY , EY , FY ), let g(uY , vY ) be the similarity of uY and
vY . When defining similarity score of two nodes, we explore a
similar manner of the state-of-the-art link based on similarity re-
search [6] by considering the interactions of common nodes con-
nected to them. SimRank essentially considers common neighbors
of two nodes as a starting point of their similarity measure. It goes
through an iterative process to update such similarities based on
the updated similarity values of other nodes in the network. PRank
goes one step further by considering in-degree similarity and out-
degree similarity in a directed network. PRank also utilizes an itera-
tive process because two nodes’ similarity depends on other nodes’
similarities as well.

The major differences between our similarity computation and
PRank’s similarity computation lie in two folds. First, we let in-
fluence values from another type of nodes contribute in similar-
ity computation, in addition to link-based analysis of PRank. Sec-
ond, when considering the similarity of two nodes, for each node
in one node’s neighbor set, we take the most similar node of it in
the other node’s neighbor set, rather than computing pair-wise sim-
ilarities as PRank does. Figure 3 gives an example that illustrates
the whole similarity computation. A1 and A2 are sets of nodes
of in-links of iY and jY respectively, while B1 and B2 are sets
of nodes of their out-links. In our model, g(iY , jY ) is related to
g(a1, a2), ∀a1 ∈ A1, a2 ∈ A2 and g(b1, b2), ∀b1 ∈ B1, b2 ∈ B2.
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Figure 3: similarity Example

Furthermore, as we see iY and jY are connected to nodes in In-
fluence network (represented in circle), the influence among uX ,
vX , zX and wX also contribute to g(iY , jY ). We use a weighted
sum of two different parts to merge information from the similarity
network and the Influence network to compute g(iY , jY ). The first
part is another weighted sum of the similarity of iY , jY ’s in-links
set and the similarity of their out-links set in the similarity network.
The second part is the influence between the connected nodes of iY
and connected nodes of jY in the Influence network.

Formally, the similarity between iY and jY is defined as follows.

g(iY , jY ) = σ((λ
1

|I(iY )|
∑

{k|(k,iY )∈I(iY )}
max{l|(l,jY )∈I(jY )}g(k, l)

(1− λ)
1

|O(iY )|
∑

{k|(k,iY )∈O(iY )}
max{l|(l,jY )∈O(jY )}g(k, l))

+(1− σ)max zXiY ∈EXY
wXjY ∈EXY

h(zX , wX) (4)

Here h(zX , wX) is the influence of zX on wX , and I(iY ) and
O(iY ) are iY ’s in-degree and out-degree neighbors.

2.4 Iterative Algorithm for IS Computation
Before diving into detail computations, we first briefly review

our ultimate goal. Out of many practical demands we reduce a het-
erogeneous network to an IS network where we want to compute in-
fluence maximization on Influence network and similarity analysis
on the similarity network. We have observed the benefit of passing
information between these two tasks so that the results’ qualities of
both of them can be improved. We have also formulated new ac-
tivation probabilities for influence maximization purpose and new
similarity measures for similarity analysis. Both formulations orig-
inate from state-of-the-art works in these two fields.

From Eq. 1 ∼ 3, we know that there is no close form solutions for
each individual activation probability h and similarity score g, be-
cause they are nonlinear, non convex, and mutually dependent. Due
to the fact that h and g are intractable, we design an iterative pro-
cedure to approximate their values. We also design a pruning and
dampening michanism to accelerate the computation. The whole
algorithm is as the following.

3. EVALUATION

3.1 Dataset Description
We use paper collection of ACM digital library [5] as an instance

of IR network. We treat the paper citation network as similarity
network. If paper A cites paper B, we know that the authors of
A have influence on authors of B. Therefore, we also construct

Algorithm 1 IS algorithm
Input: Influence Network GX(VX , EX , FX); Similarity Network
GY (VY , EY , FY ); Information Tunnel GIT (VX ∪ VY , EXY ∪ EY X);
Simulation times R
Output: g(u, v) if uv ∈ EY , h(x, y) if x ∈ VX , y ∈ VX

// Initialization step
Compute the first round’s result of PRank of u, v as g0(u, v)
// Start to compute g and h
Set i = 1
while g or h is not converged do

// Compute hi−1

Enumerate each g(u, v) to get p(x → y) for xu ∈ EXY , yv ∈ EXY

First prune: remove all p(x → y) which is below average of all non-zero
p(x → y)
Set all t(x, y) = 0
for j=1 to R do

Simulate each edge’s activation
if x can reach y through a path of activated edges then
t(x, y)++

end if
end forh(x, y) = t(x, y)/R

Second prune: remove all h(x, y) which is below

∑

j
h(x,j)

#non−zero h(x,j)

// Compute gi
Compute each gi(u, v) using Eq. 4
i++

end while

an Influence network of author relations. In total, the similarity
network has 217, 335 nodes and 632, 751 edges, while the Influ-
ence network has 250, 566 nodes and 1, 486, 909 edges. The num-
ber of edges between similarity network and Influence network is
518, 358. In the experiments, we compare our model with the state
of the art social influence maximization algorithm [1, 4] on influ-
ence part and similarity computation algorithm [6] on the similarity
part, respectively. On the activation simulation we set the simula-
tion times R = 1000 for our method and both baselines (described
below). We choose λ to be 0.5 and σ to be 0.8 for the IR model.
In practice, our method converges on g and h values after 10 itera-
tions. The experiment system is implemented in Java with JDK1.6,
Eclipse and conducted on machines with Quad Core CPU with 2.2
GHz and 4GB RAM.

3.2 Comparing Seed Quality in Social Influ-
ence Maximization with State-Of-The-Art
IC Model

3.2.1 Baseline Description
We compared with two baseline methods. The first one is the

classic way to assign activation probability in original IC model,
which is uniformly drawing a probability depending on the num-
ber of edges between two nodes. Despite the simplicity, it does not
differentiate any edge. We will show that, with the help of the sim-
ilarity network information, we may assign more reasonable prob-
ability to each of these edges in order to pick up more reasonable
"influential seeds". Therefore, in our method, activation probabil-
ities are not uniformly distributed. To make a fair comparison, we
control the median of the uniform distribution to be the same as the
median of our distribution.

We also see that the activation routes change a lot from the first
baseline to our method due to our non-uniformed activation proba-
bility distribution. By comparing with the first baseline, we will
show that this new activation path structure is more reasonable.
Furthermore, we want to show that each assignment of the acti-
vation probability on each path is also reasonable. Therefore, we
design a second baseline as follows. We first obtain a distribution
of our activation probabilities. Secondly, by following that distri-
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bution, we generate a random number as the activation probability
for every edge. Therefore, this generated network has the same
path structure and activation probability distribution, but different
assignment of each edge. We use it as our second baseline. Since
this baseline has the same activation path structures as IS’s, but ran-
domness for each edge, its performance should be in between of IS
and original IC and closer to IS because it is IS’s variation.

3.2.2 Seeds Quality Comparison
In majority of social influence maximization research, seeds se-

lection is the origins of their motivation. However, few works actu-
ally discussed what kinds of people those seeds are. We can demon-
strate the IS computation generates more reasonable seeds.

Figure 3.2.2 shows the average G-index of our seed list and the
two baselines. In addition to the whole area Influence Network,
we extracted author relations within three sub-areas separately, in-
cluding Database and Data Mining (DBDM) area , Information Re-
trieval, AI, and Machine Learning (IRAIML) area, and Computer
Architecture and Hardware (CAHW) area. Our approach achieves
better performance in overall network and sub-area networks. We
also have similar result for H-index, which we choose to not show
here to save some space.

Figure 4: Seeds Quality Comparison

3.3 Comparing Similarity Computation with
PRank model

We use k-medoids to cluster nodes in similarity network. Since
we have similarity scores of nodes, we plug those scores as similar-
ity measure into the clustering method. The goal is to see which set
of scores produce higher quality clusters. We use the compactness
of the result clusters as such quality measures. Here we present the
comparison result obtained from three sub-areas similarity network
in Figure 5. We only show one subnetwork as others have similar
performances. As one can see, the similarity scores produced by IS
scheme performs consistently better than PRank [6]. The compact-
ness is defined by Davies-Bouldin index.

Figure 5: Compactness Comparison in similarity Networks

4. RELATED WORK
What we present in this paper starts from an unique observation

that combining social influence and similarity analysis could bene-
fit each other through information exchange. Influence maximiza-
tion problem is an important research branch on social networks.
The task of influence maximization is to choose some seed users to
spread certain information as wide as possible, given a certain so-
cial network [1,4]. However, majority of them do not pay attention
to how to get activation probabilities, which is one part of the prob-
lem we are solving in this paper. Amit et.al [3] did the first work
to attack this open problem. Our work is different from theirs in
two ways. First, we do not use any guidance as action logs. Second
and more importantly, their work does not consider heterogeneous
network and does not use similarity measure to calibrate activation
probability results. Similarity analysis on social network is usu-
ally based on nodes’ common neighbors or link properties, e.g., [6]
Different than most of them, we apply more information from so-
cial influence side to improve the similarity measure, which is not
considered in previous similarity research.

We have also noticed that there is another work studied a to-
tal different relation of social influence and similarity together [2].
They studied how people’s influence and their similarities affect
each other. In another word, they consider the same type of nodes’
similarity and influence in a homogeneous network. We consider
influence of one type of nodes, with the information of similarity of
another type of nodes, and vise versa, in a heterogeneous network.

5. CONCLUSION
We observe the benefits of modeling influence and similarity

together for ubiquitous heterogeneous IS network. We design a
method for such modeling and demonstrate the lifts for both sides
using a large scale real world data. We believe that analysis on IS
network has a promising future because social influence and sim-
ilarity studies are two building blocks for many research interests,
such as clustering, classification and recommendation.
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